Home
Class 12
MATHS
n is a natural number greater than 1, an...

n is a natural number greater than 1, and `A=(sqrt(n+1))/n+(sqrt(n+4))/(n+3)+(sqrt(n+7))/(n+6)+(sqrt(n+10))/(n+9)+(sqrt(n+13))/(n+12),B=1/(sqrt(n-1))+1/(sqrt(n+2))+1/(sqrt(n+5))+1/(sqrt(n+8))+1/(sqrt(n+11))` then

Promotional Banner

Similar Questions

Explore conceptually related problems

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

Lt_(n rarr oo)[(sqrt(n))/(sqrt(n^(3)))+(sqrt(n))/(sqrt((n+4)^(3)))+....+(sqrt(n))/(sqrt([n+4(n-1)]^(3)))]