Home
Class 12
MATHS
|[x,x^(2),yz],[y,y^(2),zx],[z,z^(2),xy]|...

|[x,x^(2),yz],[y,y^(2),zx],[z,z^(2),xy]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

show tha |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]| =0

Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=0 .

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|