Home
Class 12
MATHS
If int0^11 (11^x)/(11^([x])) dx=k/(log 1...

If `int_0^11 (11^x)/(11^([x])) dx=k/(log 11)` then value of k is (where [*] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(11) (11^(x))/(11^([x]))dx = k/(log11) , (where [] denotes greatest integer function) then value of k is

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_0^1.5 [x^2] dx is : where [x] denotes greatest integer function.

The value of int_0^100 [tan^-1 x]dx is, (where [*] denotes greatest integer function)

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)