Home
Class 12
MATHS
" If "int(0)^(1)(e^(t))/(1+t)dt=A" then ...

" If "int_(0)^(1)(e^(t))/(1+t)dt=A" then the value of "int_(0)^(1)(e^(t))/((1+t)^(2))dt" is : "

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a

If int_(0)^(1)(e^(t))/(1+t)dt=a then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a .

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

Ifint_0^1(e^t dt)/(t+1)=a ,then find the value of int_(b-1)^b(e^(-t)dt)/(t-b-1)