Home
Class 12
MATHS
Solve for x : x+(log)(10)(1+2^x)=xdot(lo...

Solve for `x : x+(log)_(10)(1+2^x)=xdot(log)_(10)5+log_(10)6`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

The number of positive integers satisfying x+(log)_(10)(2^x+1)=x(log)_(10)5+(log)_(10)6 is...........

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

5^(log_(10)x)=50-x^(log_(10)5)

Solve for x.x^(log_(10)x+2)=10^(log_(10)x+2)

solve for x log_(2)(9-2^(x))=10^(log_(10)(3-x))

Solve 25^(log_(10)x)=5+4x^(log_(10)5)

Solve the following equaions for x and y log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y " and " (1+3+5+"...."+(2y-1))/(4+7+10+"...."+(3y-1))=(20)/(7log_(10)x) .