Home
Class 12
MATHS
Solve : 1+ 2 log(2+x)5=log5(x+2)...

Solve : `1+ 2 log_(2+x)5=log_5(x+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1 + 2 \log_{(2+x)} 5 = \log_5 (x+2) \), we can follow these steps: ### Step 1: Rewrite the logarithmic equation We start with the given equation: \[ 1 + 2 \log_{(2+x)} 5 = \log_5 (x+2) \] Using the property of logarithms that states \( \log_a b = \frac{1}{\log_b a} \), we can rewrite \( \log_{(2+x)} 5 \) as: \[ \log_{(2+x)} 5 = \frac{1}{\log_5 (2+x)} \] Thus, we can rewrite the equation as: \[ 1 + 2 \cdot \frac{1}{\log_5 (2+x)} = \log_5 (x+2) \] ### Step 2: Substitute and simplify Let \( t = \log_5 (2+x) \). Then the equation becomes: \[ 1 + \frac{2}{t} = t \] ### Step 3: Clear the fraction Multiply through by \( t \) to eliminate the fraction: \[ t + 2 = t^2 \] Rearranging gives us: \[ t^2 - t - 2 = 0 \] ### Step 4: Factor the quadratic equation We can factor the quadratic equation: \[ (t - 2)(t + 1) = 0 \] Setting each factor to zero gives us the possible values for \( t \): \[ t - 2 = 0 \quad \Rightarrow \quad t = 2 \] \[ t + 1 = 0 \quad \Rightarrow \quad t = -1 \] ### Step 5: Solve for \( x \) using \( t = 2 \) Substituting \( t = 2 \) back into the equation \( t = \log_5 (2+x) \): \[ \log_5 (2+x) = 2 \quad \Rightarrow \quad 2+x = 5^2 = 25 \] Thus, \[ x = 25 - 2 = 23 \] ### Step 6: Solve for \( x \) using \( t = -1 \) Now substituting \( t = -1 \): \[ \log_5 (2+x) = -1 \quad \Rightarrow \quad 2+x = 5^{-1} = \frac{1}{5} \] Thus, \[ x = \frac{1}{5} - 2 = \frac{1}{5} - \frac{10}{5} = -\frac{9}{5} \] ### Step 7: Final solutions The solutions to the equation are: \[ x = 23 \quad \text{and} \quad x = -\frac{9}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_(2)(3x-2)=log_((1)/(2))x

Solve log(-x)=2log(x+1)

Solve :2log_(2)(log_(2)x)+log_((1)/(2))(log_(2)2sqrt(2)x)=1

Solve 1

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve the equation log_(2)(3-x)-log_(2)(("sin"(3pi)/4)/(5-x)}=1/2+log_(2)(x+7)

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve : log_(1-2x)(6x^(2)-5x+1)-log_(1-3x)(4x^(2)-4x+1)=2

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).