Home
Class 12
MATHS
Solve : log1- x (3-x)=log(3-x)(1-x)...

Solve : `log_1- x (3-x)=log_(3-x)(1-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{1-x}(3-x) = \log_{3-x}(1-x) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation Using the property of logarithms that states \( \log_a b = \frac{1}{\log_b a} \), we can rewrite the equation: \[ \log_{1-x}(3-x) = \frac{1}{\log_{3-x}(1-x)} \] This implies: \[ \log_{1-x}(3-x) = \log_{3-x}(1-x) \] ### Step 2: Let \( t = \log_{1-x}(3-x) \) This gives us: \[ t = \frac{1}{t} \] Multiplying both sides by \( t \) (assuming \( t \neq 0 \)): \[ t^2 = 1 \] Thus, we have two possible solutions: \[ t = 1 \quad \text{or} \quad t = -1 \] ### Step 3: Solve for \( t = 1 \) If \( t = 1 \): \[ \log_{1-x}(3-x) = 1 \] This implies: \[ 3-x = 1-x \] Solving this gives: \[ 3 = 1 \quad \text{(which is not possible)} \] ### Step 4: Solve for \( t = -1 \) If \( t = -1 \): \[ \log_{1-x}(3-x) = -1 \] This implies: \[ 3-x = \frac{1}{1-x} \] Multiplying both sides by \( 1-x \): \[ (3-x)(1-x) = 1 \] Expanding the left side: \[ 3 - 3x - x + x^2 = 1 \] This simplifies to: \[ x^2 - 4x + 3 = 1 \] Rearranging gives: \[ x^2 - 4x + 2 = 0 \] ### Step 5: Use the quadratic formula To find the roots of the quadratic equation \( x^2 - 4x + 2 = 0 \), we apply the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -4, c = 2 \): \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} \] Calculating the discriminant: \[ x = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm \sqrt{8}}{2} = \frac{4 \pm 2\sqrt{2}}{2} = 2 \pm \sqrt{2} \] ### Step 6: Check the validity of the solutions 1. **For \( x = 2 + \sqrt{2} \)**: - \( 1 - x = 1 - (2 + \sqrt{2}) = -1 - \sqrt{2} \) (negative base, invalid) 2. **For \( x = 2 - \sqrt{2} \)**: - \( 1 - x = 1 - (2 - \sqrt{2}) = -1 + \sqrt{2} \) (positive base, valid) ### Conclusion The only valid solution is: \[ \boxed{2 - \sqrt{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : log_(1-2x)(6x^(2)-5x+1)-log_(1-3x)(4x^(2)-4x+1)=2

log_(2)(3-x)+log_(2)(1-x)=3

Solve log_(2)(3x-2)=log_((1)/(2))x

Solve: log_(1/3) (x-1) > log_(1/3) 4

Solve :log_(3)(1+log_(3)(2^(x)-7))=1

Solve: log_(3)(log_(3)x+(1)/(2)+9^(x))=2x

Solve : log_4 8+ log_4(x+3)-log_4(x-1)=2

Solve : log_(x^(2)16+log_(2x)64=3 .

Solve log_(3)(x+2)(x+4)+log_(1//3)(x+2) lt 1/2 log_(sqrt3)7 .