Home
Class 12
MATHS
Find the solution set of ((x-1)(x-2)(x-3...

Find the solution set of `((x-1)(x-2)(x-3)^(2))/((x-4)^(2)(x-5)^(3)) lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(x-1)(x-2)(x-3)^2}{(x-4)^2(x-5)^3} < 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator or denominator is equal to zero. - **Numerator**: - \(x - 1 = 0 \Rightarrow x = 1\) - \(x - 2 = 0 \Rightarrow x = 2\) - \((x - 3)^2 = 0 \Rightarrow x = 3\) (note that this is a repeated root) - **Denominator**: - \((x - 4)^2 = 0 \Rightarrow x = 4\) (note that this is a repeated root) - \((x - 5)^3 = 0 \Rightarrow x = 5\) (note that this is a repeated root) Thus, the critical points are \(x = 1, 2, 3, 4, 5\). ### Step 2: Plot the critical points on a number line We will place the critical points on a number line: - Open intervals: \( (-\infty, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, \infty) \) ### Step 3: Test the intervals We will test points from each interval to determine the sign of the expression. 1. **Interval \((- \infty, 1)\)**: Choose \(x = 0\) \[ \frac{(0-1)(0-2)(0-3)^2}{(0-4)^2(0-5)^3} = \frac{(-1)(-2)(9)}{(16)(-125)} = \frac{18}{-2000} < 0 \] 2. **Interval \((1, 2)\)**: Choose \(x = 1.5\) \[ \frac{(1.5-1)(1.5-2)(1.5-3)^2}{(1.5-4)^2(1.5-5)^3} = \frac{(0.5)(-0.5)(2.25)}{(-2.5)^2(-3.5)^3} > 0 \] 3. **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5-1)(2.5-2)(2.5-3)^2}{(2.5-4)^2(2.5-5)^3} = \frac{(1.5)(0.5)(0.25)}{(-1.5)^2(-2.5)^3} < 0 \] 4. **Interval \((3, 4)\)**: Choose \(x = 3.5\) \[ \frac{(3.5-1)(3.5-2)(3.5-3)^2}{(3.5-4)^2(3.5-5)^3} = \frac{(2.5)(1.5)(0.25)}{(-0.5)^2(-1.5)^3} < 0 \] 5. **Interval \((4, 5)\)**: Choose \(x = 4.5\) \[ \frac{(4.5-1)(4.5-2)(4.5-3)^2}{(4.5-4)^2(4.5-5)^3} = \frac{(3.5)(2.5)(2.25)}{(0.5)^2(-0.5)^3} > 0 \] 6. **Interval \((5, \infty)\)**: Choose \(x = 6\) \[ \frac{(6-1)(6-2)(6-3)^2}{(6-4)^2(6-5)^3} = \frac{(5)(4)(9)}{(2)(1)} > 0 \] ### Step 4: Combine the results From our tests, the function is negative in the intervals: - \((- \infty, 1)\) - \((2, 3)\) - \((3, 4)\) ### Step 5: Write the solution set Since the inequality is strict (\(< 0\)), we exclude the critical points. Thus, the solution set is: \[ (-\infty, 1) \cup (2, 3) \cup (3, 4) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution set of (x^(2))/(x-3)gt0 .

Find the solution set of ((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0

Find the solution set of (1)/(x+3) lt 0

Find the solution set of (1)/(2x -4) lt 0

Find the solution set of (x-4)(x^(2)-2x+1)gt0 .

Find the solution set of 4x-5lt11,-3x-4ge8 .

The solution set of ((x^(2)+x+1)(x^(2))log(x))/((x+1)(x+9))lt 0 is

Solution set of (5x-1)lt (x+1)^(2)lt (7x -3) is

Find the solution set of inequality |(3|x|-2)/(|x|-1)|>=2