Home
Class 12
MATHS
If alpha , beta are the roots of ax^(...

If ` alpha , beta ` are the roots of ` ax^(2) + bx +c=0` , then ` (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3))` is equal to :

A

`(c^(2))/(a^(2))`

B

`(c^(3))/(a^(3))`

C

`(3abc-b^(3))/(c^(3))`

D

`(b^(2)-2ac)/(ac)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}}\) where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(ax^2 + bx + c = 0\). ### Step 1: Use the identity for the sum of cubes We know that: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \] Using the relationships from Vieta's formulas: \[ \alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha\beta = \frac{c}{a} \] We can express \(\alpha^2 + \beta^2\) as: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \] Thus: \[ \alpha^3 + \beta^3 = \left(-\frac{b}{a}\right)\left(\frac{b^2}{a^2} - \frac{2c}{a} - \frac{c}{a}\right) = -\frac{b}{a}\left(\frac{b^2 - 2ac}{a^2}\right) = -\frac{b(b^2 - 2ac)}{a^3} \] ### Step 2: Calculate \(\alpha^{-3} + \beta^{-3}\) We can rewrite \(\alpha^{-3} + \beta^{-3}\) as: \[ \alpha^{-3} + \beta^{-3} = \frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{\alpha^3 + \beta^3}{\alpha^3 \beta^3} \] Using the product of the roots: \[ \alpha^3 \beta^3 = (\alpha \beta)^3 = \left(\frac{c}{a}\right)^3 = \frac{c^3}{a^3} \] Thus: \[ \alpha^{-3} + \beta^{-3} = \frac{\alpha^3 + \beta^3}{\frac{c^3}{a^3}} = \frac{a^3(\alpha^3 + \beta^3)}{c^3} \] ### Step 3: Substitute into the original expression Now we substitute back into the original expression: \[ \frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}} = \frac{\alpha^3 + \beta^3}{\frac{a^3(\alpha^3 + \beta^3)}{c^3}} = \frac{c^3}{a^3} \] ### Final Result Thus, we find that: \[ \frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}} = \frac{c^3}{a^3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 , a!=0 then alpha+beta =

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=