Home
Class 12
MATHS
If alpha beta gamma are the roots of x^3...

If alpha beta gamma are the roots of `x^3+x^2-5x-1=0` then `alpha+beta+gamma` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

Let alpha,beta,gamma be the complex roots of x^(3)-1=0 then,alpha+beta+gamma is equal to

If alpha, beta, gamma are the roots of x^3+px^2+qx+r=0 then alpha^(2)(beta+gamma)+beta^(2)(gamma+alpha)+gamma^(2)(alpha+beta)=

if alpha,beta,gamma are the roots of 2x^(3)-5x^(2)-14x+8=0 then find alpha+beta+gamma

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-3x-1=0 then alpha^(-2)+beta^(-2)+gamma^(-2)=

If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=