Home
Class 12
MATHS
sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)...

`sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)`

A

No solution

B

One solution

C

Two solutions

D

More than two solutions

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x+1)+sqrt(x-1)=1

Evaluate : int(sqrt(x+1)-sqrt(x-1))/(sqrt(x+1)+sqrt(x-1))dx

int(sqrt(x+1)-sqrt(x-1))/(sqrt(x+1)+sqrt(x-1))dxVx+1-Vx-1

Solve for x:sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4)

If x>1 and (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=2 then x

find x: (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3/7

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

( Solve )/(sqrt(x+3-4sqrt(x-1)))+sqrt(x+8-6sqrt(x-1))=1