Home
Class 12
MATHS
If x lt 0 , y lt 0 , x + y +(x)/(y)=(1)...

If ` x lt 0 , y lt 0 , x + y +(x)/(y)=(1)/(2) and (x+y)((x)/y)=-(1)/(2)` then :

A

`x=y`

B

`x ne y`

C

`x=2y`

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Fill in the blanks If x<0,y<0,x+y+(x/y)=(1/2) and (x+y)(x/y)=-(1/2), then x=( and y)/( and y)

If y!=0 then the number of values of the pair "(x,y)" such that x+y+(x)/(v)=(1)/(2) and " (x+y)(x)/(y)=-(1)/(2) is

(xy)/(x-y)=(1)/(2);(xy)/(x+y)=(1)/(5) wherex +y!=0;x-y!=0

2x - y gt 1 , x - 2y lt 1

If y=0 then the number of values of the pair (x, y) such that x+y+x/y=1/2 and (x+y)x/y= -1/2 is:

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

If x lt 1 , y lt -1, then (x-1,y-3) lies in :