Home
Class 12
MATHS
Prove that cos^(2)theta + sec^(2)theta c...

Prove that `cos^(2)theta + sec^(2)theta` can never be less than 2 for all values of `theta in R-(2n+1)(pi)/(2) , n in I`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(2)theta+cos^(2)theta can never be less than 2.

Prove that : sqrt((1-cos^(2)theta)sec^(2)theta)=tantheta

Prove that sin^(2n)theta + cos^(2n)theta le 1 for all theta and n ge 1 .

Prove :cos ec^(2)theta+sec^(2)theta=cos ec^(2)theta sec^(2)theta

Prove that: cos^(2)theta=cos^(2)alpha then theta=n pi+-alpha,n in Z

Prove that : sec^(2)theta - cos^(2) theta = sin^(2)theta(sec^(2)theta + 1)

Prove that : (sin^(2) theta)/(cos theta ) + cos theta = sec theta

Consider the following statements : 1. "cos"theta+"sec"theta can never be equal to 1.5. 2. "sec"^(2)theta+"cosec"^(2)theta can never be less than 4. Which of the statements given above is/are correct ?

If (1)/(6)sin theta,cos theta and tan theta are in GP,then the general value of theta is (i) 2n pi+-(pi)/(3)( ii) 2n pi+-(pi)/(6) (iii) 2n pi+-(-1)^(n)(pi)/(3)( iv )n pi+-(pi)/(3)

If tan^(2)theta-sec theta-5=0 for exactly 9 values of theta in[0,(n pi)/(2)];n in N, then the greatest value of n is