Home
Class 12
MATHS
If alpha "and " beta be two distinct ...

If `alpha "and " beta ` be two distinct real numbers such that `(alpha-beta) ne 2 n pi` for any integer n satisfying the equations a cos `theta + b ` sin `theta =c` then prove that
`(i) "cos " (alpha+ beta) =(a^(2) -b^(2))/(a^(2) +b^(2)) " "(ii) "sin " (alpha + beta) = (2ab)/(a^(2)+b^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha , beta alpha ne beta satisfies the question a costheta + b sin theta = c , then the value of tan ( (alpha + beta)/(2) ) is :

If sin alpha + sin beta = a " and " cos alpha + cos beta = b then proved that cos(alpha - beta) = (a^(2) + b^(2) - 2)/(2) " and " tan ""(alpha - beta)/(2) = pm sqrt (4-a^(2)-b^(2))/(a^(2)+b^(2)) .

If alpha and beta satisfy the equation a cos2x+b sin2x=c then prove that (i)cos^(2)alpha+cos^(2)beta=(a^(2)+ac+b^(2))/(a^(2)+b^(2))(ii)cos alpha*cos beta=(a+c)/(2sqrt(a^(2)+b^(2)))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))