Home
Class 12
MATHS
Eliminate theta from a sin theta + bc...

Eliminate `theta` from
`a sin theta + bcos theta = x "and" a cos theta -b sin theta = y`

Text Solution

AI Generated Solution

The correct Answer is:
To eliminate \( \theta \) from the equations \( a \sin \theta + b \cos \theta = x \) and \( a \cos \theta - b \sin \theta = y \), we can follow these steps: ### Step 1: Square both equations First, we square both equations. 1. \( x = a \sin \theta + b \cos \theta \) \[ x^2 = (a \sin \theta + b \cos \theta)^2 \] Expanding this gives: \[ x^2 = a^2 \sin^2 \theta + 2ab \sin \theta \cos \theta + b^2 \cos^2 \theta \] 2. \( y = a \cos \theta - b \sin \theta \) \[ y^2 = (a \cos \theta - b \sin \theta)^2 \] Expanding this gives: \[ y^2 = a^2 \cos^2 \theta - 2ab \sin \theta \cos \theta + b^2 \sin^2 \theta \] ### Step 2: Add the squared equations Now, we add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = (a^2 \sin^2 \theta + b^2 \cos^2 \theta + 2ab \sin \theta \cos \theta) + (a^2 \cos^2 \theta + b^2 \sin^2 \theta - 2ab \sin \theta \cos \theta) \] ### Step 3: Simplify the expression Combining like terms: \[ x^2 + y^2 = a^2 (\sin^2 \theta + \cos^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ x^2 + y^2 = a^2 \cdot 1 + b^2 \cdot 1 = a^2 + b^2 \] ### Final Result Thus, we have eliminated \( \theta \) and the relationship between \( x \) and \( y \) is given by: \[ x^2 + y^2 = a^2 + b^2 \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Eliminate theta from the equation , a=x sin theta-y cos theta and b= x cos theta + y sin theta .

Eliminate theta from the equation s=sin theta +"cosec" theta and r= sin theta-"cosec" theta .

Knowledge Check

  • Area of a triangle whose vertices are (a cos theta, b sin theta) , ( - a sin theta , b cos theta) " and " ( - a cos theta, - b sin theta) is

    A
    `ab sin theta cos theta `
    B
    `a cos theta sin theta`
    C
    `1/2 ab `
    D
    `ab`
  • The eliminant of theta from x cos theta - y sin theta = 2 , x sin theta + y cos theta = 4 will give

    A
    `x^2 + y^2 = 20`
    B
    `3x^2 + y^2 = 20`
    C
    `x^2 - y^2 = 20`
    D
    `x^2-y^2 =20`
  • Similar Questions

    Explore conceptually related problems

    Find the relation obtained by eliminating theta from the equations x=a cos theta+b sin theta and y=a sin theta- b sin theta .

    Eliminate theta from lambda cos 2theta = cos(theta + alpha) and lambda sin 2theta = 2sin(theta + alpha)

    Eliminate theta from lambda cos 2theta = cos(theta + alpha) and lambda sin 2theta = 2sin(theta + alpha)

    Eliminate theta from x=a cos^(4)theta , y=b sin^(4)theta .

    Eliminate theta from x=a cos^(4)theta,y=b sin^(4)theta

    Eliminate theta, phi from sin theta + sin phi = a , cos theta+ cos phi = b and tan theta/2 * tan phi/2 = c.