Home
Class 12
MATHS
Prove : cos15^(@) - sin15^(@) = 1//sqrt2...

Prove : `cos15^(@) - sin15^(@) = 1//sqrt2`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (i) "cos " 15^(@) - " sin " 15^(@) = (1)/(sqrt(2)) (ii) " cot " 105^(@) - " tan " 105^(@) =2sqrt(3) (iii) (tan 69^(@) + tan 66^(@))/(1-tan 69^(@) tan 66^(@)) =-1

The value of cos15^(@)-sin15^(@) is

The value of cos 15^(@) - sin 15^(@) is

sin15^(@)+cos105^(@)=?

The value of cos 15^(@) - sin 15^(@) is equal to

sin 15^(@) + cos 105 ^(@) =

Prove that (i) " 2 cos " 45^(@) " cos " 15^(@)=((sqrt(3)+1))/(2) " "(ii) 2 " sin " 75^(@) " sin " 15^(@)=(1)/(2) (iii) " cos " 15^(@) - " sin " 15 =(1)/(sqrt(2))

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

The value of (cos 15^(@) - sin 15^(@))/(cos 15^(@) + sin 15^(@) is