Home
Class 12
MATHS
The minimum value of cos2theta +costheta...

The minimum value of `cos2theta +costheta` for all values of `theta `is :

A

`-2sqrt2`

B

`(3sqrt3)/(2)`

C

`-(9)/(8)`

D

`-(9)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \cos 2\theta + \cos \theta \), we can follow these steps: ### Step 1: Use the double angle formula for cosine We know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] Substituting this into the expression gives: \[ \cos 2\theta + \cos \theta = (2\cos^2 \theta - 1) + \cos \theta \] This simplifies to: \[ 2\cos^2 \theta + \cos \theta - 1 \] ### Step 2: Let \( x = \cos \theta \) Now, we can rewrite the expression in terms of \( x \): \[ 2x^2 + x - 1 \] ### Step 3: Find the vertex of the quadratic The expression \( 2x^2 + x - 1 \) is a quadratic function. The minimum value of a quadratic \( ax^2 + bx + c \) occurs at: \[ x = -\frac{b}{2a} \] For our quadratic, \( a = 2 \) and \( b = 1 \): \[ x = -\frac{1}{2 \cdot 2} = -\frac{1}{4} \] ### Step 4: Substitute back to find the minimum value Now we substitute \( x = -\frac{1}{4} \) back into the quadratic: \[ 2\left(-\frac{1}{4}\right)^2 + \left(-\frac{1}{4}\right) - 1 \] Calculating this gives: \[ 2 \cdot \frac{1}{16} - \frac{1}{4} - 1 = \frac{2}{16} - \frac{4}{16} - \frac{16}{16} = \frac{2 - 4 - 16}{16} = \frac{-18}{16} = -\frac{9}{8} \] ### Conclusion Thus, the minimum value of \( \cos 2\theta + \cos \theta \) is: \[ \boxed{-\frac{9}{8}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of cos2 theta+cos theta for all real value of theta is

The maximum values of cos2 theta+cos theta for all real values of theta is:

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . Find the minimum value of costheta+cos2theta for all real values of theta . Find the maximum and minimum value of cos^(2)theta-6sin thetacos theta+3sin^(2)theta+2 .

The minimum value of (cos theta-sin theta) is

The minimum value of sin^2 theta + cos^4 theta is

The minimum value of (cos theta-sin theta ) is

The minimum value of 7cos theta+24sin theta is

The minimum value of 24sin theta-7cos theta is