Home
Class 12
MATHS
If A= cos^(4)theta+sin^(2)theta , then f...

If `A= cos^(4)theta+sin^(2)theta` , then for all values of `theta` :

A

`1 lt A le2`

B

`(13)/(16) le A le 1`

C

`(3)/(4) le A le (13)/(16)`

D

`(3)/(4) le A le 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the expression \( A = \cos^4 \theta + \sin^2 \theta \). ### Step 1: Rewrite the expression We start with the expression: \[ A = \cos^4 \theta + \sin^2 \theta \] We can rewrite \( \cos^4 \theta \) using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ \cos^4 \theta = (\cos^2 \theta)^2 = (1 - \sin^2 \theta)^2 \] Thus, we can express \( A \) as: \[ A = (1 - \sin^2 \theta)^2 + \sin^2 \theta \] ### Step 2: Expand the expression Now, we expand \( (1 - \sin^2 \theta)^2 \): \[ A = (1 - 2\sin^2 \theta + \sin^4 \theta) + \sin^2 \theta \] This simplifies to: \[ A = 1 - 2\sin^2 \theta + \sin^4 \theta + \sin^2 \theta \] Combining like terms gives: \[ A = 1 - \sin^2 \theta + \sin^4 \theta \] ### Step 3: Substitute \( x = \sin^2 \theta \) Let \( x = \sin^2 \theta \). Since \( \sin^2 \theta \) varies from 0 to 1, we have: \[ A = 1 - x + x^2 \] Now, we need to find the range of \( A \) as \( x \) varies from 0 to 1. ### Step 4: Find the critical points To find the maximum and minimum values of \( A \), we can differentiate it with respect to \( x \): \[ \frac{dA}{dx} = -1 + 2x \] Setting the derivative equal to zero to find critical points: \[ -1 + 2x = 0 \implies 2x = 1 \implies x = \frac{1}{2} \] ### Step 5: Evaluate \( A \) at critical points and endpoints Now we evaluate \( A \) at \( x = 0 \), \( x = 1 \), and \( x = \frac{1}{2} \): 1. When \( x = 0 \): \[ A(0) = 1 - 0 + 0^2 = 1 \] 2. When \( x = 1 \): \[ A(1) = 1 - 1 + 1^2 = 1 \] 3. When \( x = \frac{1}{2} \): \[ A\left(\frac{1}{2}\right) = 1 - \frac{1}{2} + \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \] ### Step 6: Determine the range of \( A \) From the evaluations: - The maximum value of \( A \) is 1. - The minimum value of \( A \) is \( \frac{3}{4} \). Thus, the range of \( A \) is: \[ \frac{3}{4} \leq A \leq 1 \] ### Final Answer The final answer is: \[ A \in \left[\frac{3}{4}, 1\right] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos^(2)theta+sin^(4)theta then for all real values of theta

If A=sin^(2)theta+cos^(4)theta, then for all real values of theta

If A=sin^(8) theta + cos^(14) theta , then for all values of theta ,

If A=sin^(2)theta+cos^(4)theta , for any value of theta , then the value of A is

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If A=cos^(2)theta+sin^(4)theta, prove that (3)/(4)<=A<=1 for all values of theta

If sin theta + sin^2 theta =1 , then the value of cos^2 theta + cos^ 4 theta is