Home
Class 12
MATHS
If A+B+C =pi, prove that : sin^(2)A +sin...

If A+B+C =`pi`, prove that : `sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A+B+C=180^0 , prove that : sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)

If A+B+C=pi, prove that sin^(2)A-sin^(2)B+sin^(2)C=2sinA cos B sinC

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)