Home
Class 12
MATHS
Solve for theta: cos2theta = (sqrt2+1)(c...

Solve for `theta`: `cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2))`.

Text Solution

Verified by Experts

The correct Answer is:
`theta=2n pi pm (pi)/(3) ` or ` theta= 2kpi pm (pi)/4 , n, k in I`
Promotional Banner

Similar Questions

Explore conceptually related problems

cos2 theta-(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))=0

Solve the following cos2 theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2)))

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

Solve sin theta+cos theta=sqrt(2) cos A .

cos ec theta sqrt(1-cos^(2)theta)=1

Period of sin theta - sqrt2 cos theta is