Home
Class 12
MATHS
If cos alpha + cosbeta=a, sinalpha + sin...

If `cos alpha + cosbeta=a, sinalpha + sinbeta=b and theta ` is the arithmetic mean between `alpha` and `beta` , then `(sin2theta + cos 2theta)` is equal to :

A

`((a+b)^(2))/(a^2 + b^2)`

B

`((a-b)^(2))/(a^2 + b^2)`

C

`(a^(2)-b^(2))/(a^2 + b^2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin 2\theta + \cos 2\theta \) given that \( \cos \alpha + \cos \beta = a \) and \( \sin \alpha + \sin \beta = b \), where \( \theta \) is the arithmetic mean of \( \alpha \) and \( \beta \). ### Step-by-Step Solution 1. **Express \( \theta \)**: \[ \theta = \frac{\alpha + \beta}{2} \] 2. **Use the sum-to-product identities**: From the given equations, we can express \( \cos \alpha + \cos \beta \) and \( \sin \alpha + \sin \beta \) using the sum-to-product identities: \[ \cos \alpha + \cos \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \sin \alpha + \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] Substituting \( \theta \) into these identities gives: \[ a = 2 \cos(\theta) \cos\left(\frac{\alpha - \beta}{2}\right) \] \[ b = 2 \sin(\theta) \cos\left(\frac{\alpha - \beta}{2}\right) \] 3. **Divide the equations**: Dividing the two equations: \[ \frac{b}{a} = \frac{2 \sin(\theta) \cos\left(\frac{\alpha - \beta}{2}\right)}{2 \cos(\theta) \cos\left(\frac{\alpha - \beta}{2}\right)} \] Simplifying gives: \[ \frac{b}{a} = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta) \] 4. **Construct a right triangle**: Let’s consider a right triangle where: - Opposite side = \( b \) - Adjacent side = \( a \) - Hypotenuse = \( \sqrt{a^2 + b^2} \) 5. **Find \( \sin \theta \) and \( \cos \theta \)**: From the triangle: \[ \sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}, \quad \cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}} \] 6. **Calculate \( \sin 2\theta \) and \( \cos 2\theta \)**: Using the double angle formulas: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] \[ \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \] Substituting the values: \[ \sin(2\theta) = 2 \left(\frac{b}{\sqrt{a^2 + b^2}}\right) \left(\frac{a}{\sqrt{a^2 + b^2}}\right) = \frac{2ab}{a^2 + b^2} \] For \( \cos(2\theta) \): \[ \cos(2\theta) = \left(\frac{a}{\sqrt{a^2 + b^2}}\right)^2 - \left(\frac{b}{\sqrt{a^2 + b^2}}\right)^2 = \frac{a^2 - b^2}{a^2 + b^2} \] 7. **Combine \( \sin 2\theta \) and \( \cos 2\theta \)**: Now, we can find \( \sin(2\theta) + \cos(2\theta) \): \[ \sin(2\theta) + \cos(2\theta) = \frac{2ab}{a^2 + b^2} + \frac{a^2 - b^2}{a^2 + b^2} \] \[ = \frac{2ab + a^2 - b^2}{a^2 + b^2} \] ### Final Result Thus, the expression \( \sin 2\theta + \cos 2\theta \) is: \[ \sin 2\theta + \cos 2\theta = \frac{a^2 + 2ab - b^2}{a^2 + b^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta=(3)/(2) and sin alpha+sin beta=(1)/(2) and theta is the arithmetic mean of alpha and beta, then sin2 theta+cos2 theta is equal to:

If cos alpha+cos beta=(3)/(2) and sin alpha+sin beta=(1)/(2) and theta is the arithmetic mean of alpha and beta, then sin2 theta+cos2 theta is equal to

If cosalpha+cosbeta=(3)/(2)and"sin"alpha+sinbeta=(1)/(2)andtheta is the arithmetic mean of alphaandbeta , then sin2theta+cos2theta is equal to

Ifcos alpha+cos beta=a,sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

If cos alpha+cos beta=a sin alpha+sin beta=balpha-beta=2 theta then (cos3 theta)/(cos theta)=

If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?