Home
Class 12
MATHS
If cos theta =1/2 (x+1/x ) , then 1/2(x...

If `cos theta =1/2 (x+1/x ) ,` then ` 1/2(x^(2) +1/(x^(2)))` is equal to :

A

`sin2theta`

B

`cos 2theta`

C

`tan 2theta`

D

`sec 2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{2} \left( x^2 + \frac{1}{x^2} \right) \) given that \( \cos \theta = \frac{1}{2} \left( x + \frac{1}{x} \right) \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \cos \theta = \frac{1}{2} \left( x + \frac{1}{x} \right) \] 2. **Multiply both sides by 2:** \[ 2 \cos \theta = x + \frac{1}{x} \] 3. **Square both sides:** \[ (2 \cos \theta)^2 = \left( x + \frac{1}{x} \right)^2 \] 4. **Expand both sides:** \[ 4 \cos^2 \theta = x^2 + 2 + \frac{1}{x^2} \] 5. **Rearrange the equation to isolate \( x^2 + \frac{1}{x^2} \):** \[ x^2 + \frac{1}{x^2} = 4 \cos^2 \theta - 2 \] 6. **Now, we need to find \( \frac{1}{2} \left( x^2 + \frac{1}{x^2} \right) \):** \[ \frac{1}{2} \left( x^2 + \frac{1}{x^2} \right) = \frac{1}{2} \left( 4 \cos^2 \theta - 2 \right) \] 7. **Distributing \( \frac{1}{2} \):** \[ = 2 \cos^2 \theta - 1 \] 8. **Recognize the double angle identity for cosine:** \[ 2 \cos^2 \theta - 1 = \cos(2\theta) \] 9. **Thus, we conclude:** \[ \frac{1}{2} \left( x^2 + \frac{1}{x^2} \right) = \cos(2\theta) \] ### Final Answer: \[ \frac{1}{2} \left( x^2 + \frac{1}{x^2} \right) = \cos(2\theta) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

i) Prove that: (1-sin2A)/(1+sin2A) = tan^(2)(pi/4-A) ii) If costheta=1/2(x+1/x) , then prove that: cos2theta=1/2(x^(2)+1/x^(2)) and cos3theta=1/2(x^(3)+1/x^(3))

If x+(1)/(x)=2cos theta, then x^(3)+(1)/(x^(3)) is equal to

If 2costheta=x+1/x , then 2cos2theta= ?

If 2cos theta=x+1/x then 2cos^2 theta=

If x in R , then f(x)=cos^(-1)((1-x^(2))/(1+x^(2))) is equal to

If x cos theta - sin theta =1 , then x^2 + (1 + x^2 ) sin theta equals

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to