Home
Class 12
MATHS
If sin(theta-x) = a, cos (theta-y) = b, ...

If `sin(theta-x) = a, cos (theta-y) = b`, then `cos(x-y)` may be equal to :

A

`bsqrt((1-a^(2))) +asqrt((1-b^(2)))`

B

ab

C

`asqrt((1-b^(2))) -bsqrt((1-a^(2)))`

D

2ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin(\theta - x) = a \) 2. \( \cos(\theta - y) = b \) We need to find the value of \( \cos(x - y) \). ### Step 1: Express \( \theta \) in terms of \( x \) and \( a \) From the first equation, we can express \( \theta \) as follows: \[ \theta - x = \sin^{-1}(a) \implies \theta = x + \sin^{-1}(a) \] ### Step 2: Express \( \theta \) in terms of \( y \) and \( b \) From the second equation, we can express \( \theta \) similarly: \[ \theta - y = \cos^{-1}(b) \implies \theta = y + \cos^{-1}(b) \] ### Step 3: Set the two expressions for \( \theta \) equal to each other Now we have two expressions for \( \theta \): \[ x + \sin^{-1}(a) = y + \cos^{-1}(b) \] ### Step 4: Rearrange the equation to find \( x - y \) Rearranging gives us: \[ x - y = \cos^{-1}(b) - \sin^{-1}(a) \] ### Step 5: Find \( \cos(x - y) \) Now we need to find \( \cos(x - y) \): \[ \cos(x - y) = \cos(\cos^{-1}(b) - \sin^{-1}(a)) \] ### Step 6: Use the cosine subtraction formula Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] We can substitute \( a = \cos^{-1}(b) \) and \( b = \sin^{-1}(a) \): \[ \cos(x - y) = \cos(\cos^{-1}(b)) \cos(\sin^{-1}(a)) + \sin(\cos^{-1}(b)) \sin(\sin^{-1}(a)) \] ### Step 7: Simplify the expression Now we simplify each term: 1. \( \cos(\cos^{-1}(b)) = b \) 2. \( \sin(\sin^{-1}(a)) = a \) 3. \( \sin(\cos^{-1}(b)) = \sqrt{1 - b^2} \) (using the identity \( \sin^2 + \cos^2 = 1 \)) 4. \( \cos(\sin^{-1}(a)) = \sqrt{1 - a^2} \) Substituting these values into the equation gives: \[ \cos(x - y) = b \cdot \sqrt{1 - a^2} + a \cdot \sqrt{1 - b^2} \] ### Final Answer Thus, the value of \( \cos(x - y) \) is: \[ \cos(x - y) = b \sqrt{1 - a^2} + a \sqrt{1 - b^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

x=b sin^(2)theta & y=a cos^(2)theta

If tan theta = (x)/(y) , " then " (x sin theta + y cos theta)/( x sin theta - y cos theta) is equal to

If (sin theta)/(x)=(cos theta)/(y) then sin theta-cos theta

If sin^(-1)x=theta+beta andsin ^(-1)y=theta-beta, then 1+xy is equal to sin^(2)theta+sin^(2)beta(b)sin^(2)theta+cos^(2)beta cos^(2)theta+cos^(2)theta(d)cos^(2)theta+sin^(2)beta

If (a cot theta+b cos ec theta)=x and (b cot theta+a cos ec theta)=y then x^(2)-y^(2) is equal to:

If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

If x = a cos theta and y = b sin theta , find (dy)/(dx)