Home
Class 12
MATHS
The product cot123^0dotcot133^0dotcot137...

The product `cot123^0dotcot133^0dotcot137^0dotcot147^0,` when simplified is equal to: `-1` (b) `tan37^0` `cot33^0` (d) 1

A

-1

B

`tan37^(@)`

C

`cot33^(@)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The product cot123^@*cot133^@*cot137^@*cot147^@, when simplified is equal to: (a)-1 (b) tan37^@ (c)cot33^@ (d) 1

If cos(tan^(-1)3+cot^(-1)a)=0, then a is equal to

cot6^(0)cot42^(0)cot66^(@)cot78^(@)=1

(cos 10^0+sin 10^0)/(cos 10^0-sin 10^0) is equal to tan55^0 b. cos 55^0 c.-tan35^0 d. -cot35^0

The value of cot5^(0)cot10^(0)......cot85^(@) is

If P=(sin 300^0dottan 330^0dotsec 420^0)/(tan135^0dots in 210^0dots e c 315^0)& Q=(s e c 480^0dotcos e c 570^0t a n 330^0)/(sin 600^0dotcos 660^0dotcot 405^0) then Pa n dQ are respectively: 2, 16 (b) sqrt(2),(16)/3 -2,3/(16) (d) none of these

Prove that tan9^(0)-tan27^(0)-cot27^(0)+cot9^(0)=4

tan(9 0^(@)-cot^(- 1)1/3)=

The value of int_(0)^(a) log ( cot a + tan x) d x , where a in (0,pi//2) is equal to

cot15^(0)+cot75^(0)+cot315^(0)= a)1 b)0 c)1/2 d)3