Home
Class 12
MATHS
If 2tan""(alpha)/(2) = tan ""(beta)/(2),...

If `2tan""(alpha)/(2) = tan ""(beta)/(2)`, then `(3+5cosbeta)/(5+3cosbeta)` is equal to :

A

`cosalpha`

B

`cosbeta`

C

`sinalpha`

D

`sinbeta`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan(alpha)/(2)=tan((beta)/(2)), prove that cos alpha=(3+5cos beta)/(5+3cos beta)

If 2(tan alpha)/(2)=(tan beta)/(2), prove that cos alpha=(3+5cos beta)/(5+3cos beta)

If tan^(2)alpha=1+2tan^(2)beta , then sqrt(2)cosalpha+cosbeta is equal to (if 0ltalphalt90^(@)and90^(@)ltbetalt180^(@))

Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then tan ""(alpha)/(2) tan ""(beta)/(2) is equal to

If tan (alpha + beta) = 2 and tan (alpha - beta) = 1, then tan (2 alpha ) is equal to:

If cos alpha + cosbeta=a, sinalpha + sinbeta=b and theta is the arithmetic mean between alpha and beta , then (sin2theta + cos 2theta) is equal to :

If tan^(2)alpha=1+2tan^(2)beta , then sqrt(2)cosalpha-cosbeta=?

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)