Home
Class 12
MATHS
If 4n alpha = pi, then the value of tana...

If `4n alpha = pi`, then the value of `tanalpha*tan2alpha*tan3alpha …..tan(2n-2)alphatan(2n-1)alpha` is:

A

0

B

1

C

-1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the product: \[ \tan \alpha \cdot \tan 2\alpha \cdot \tan 3\alpha \cdots \tan (2n-2)\alpha \cdot \tan (2n-1)\alpha \] given that \(4n\alpha = \pi\). ### Step 1: Express \(n\) in terms of \(\alpha\) From the equation \(4n\alpha = \pi\), we can express \(n\) as: \[ n = \frac{\pi}{4\alpha} \] ### Step 2: Identify the angles in the product The angles in the product are: \[ \alpha, 2\alpha, 3\alpha, \ldots, (2n-2)\alpha, (2n-1)\alpha \] ### Step 3: Substitute \(n\) into the angles Substituting \(n = \frac{\pi}{4\alpha}\), we can find the last angle: \[ 2n - 1 = 2\left(\frac{\pi}{4\alpha}\right) - 1 = \frac{\pi}{2\alpha} - 1 \] ### Step 4: Use the identity for tangent We can pair the terms in the product. Notice that: \[ \tan(2n - k)\alpha = \tan\left(\frac{\pi}{2} - k\alpha\right) = \cot(k\alpha \] This means we can pair \(\tan \alpha\) with \(\tan(2n-1)\alpha\), \(\tan 2\alpha\) with \(\tan(2n-2)\alpha\), and so on. ### Step 5: Pair the terms The product can be expressed as: \[ (\tan \alpha \cdot \cot \alpha) \cdot (\tan 2\alpha \cdot \cot 2\alpha) \cdots \] Each pair \(\tan k\alpha \cdot \cot k\alpha = 1\). ### Step 6: Count the pairs Since we have \(2n\) terms, we will have \(n\) pairs. Thus, the entire product simplifies to: \[ 1 \cdot 1 \cdots 1 = 1 \] ### Final Answer Therefore, the value of the product is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 4nalpha = pi then the numerical value tan alpha* tan 2alpha *tan 3alpha ...... tan(2n -1)alpha = _____

" If alpha=(2 pi)/(7) ,then the value of tan alpha tan2 alpha+tan2 alpha tan4 alpha+tan4 alpha tan alpha is "

The value of tan alpha+2tan(2 alpha)+4tan(4 alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^(n)cot(2^(n)alpha) is

If alpha=(pi)/(14), then the value of (tan alpha tan2 alpha+tan2 alpha tan4 alpha+tan4 alpha tan alpha) is 1(b)1/2(c)2(d)1/3

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is