Home
Class 12
MATHS
If P(n) = cos^(n)theta +sin^(n)theta, th...

If `P_(n) = cos^(n)theta +sin^(n)theta`, then `P_(2) - P_(1) ` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If P_(n)=cos^(n)theta+sin^(n)theta then 2P_(6)-3P_(4)+1=

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

If P_(n) = cos^(n) theta + sin^(n) theta 6P_(10) -15P_(8) + 10P_(6) is equal to

""^(2n)P_(n) is equal to

If P_(n) = cos^(n) theta + sin^(n) theta Maximum value of P_(1000) will be

If p_(n)=cos^(n)theta+sin^(n)theta then p_(n)-p_(n-2)=kp_(n-4) where k

If P_(n)=cos^(n)theta+sin^(n)theta and Q_(n)=cos^(n)theta-sin^(n)theta then show that p_(n-2)=-sin^(2)theta cos^(2) theta p_(n-4) hence show that p_(4)=1-2 sin^(2) theta cos^(2) theta Q_(4)=cos^(2) theta- sin^(2) theta