Home
Class 12
MATHS
The nummber of distinct solutions of sin...

The nummber of distinct solutions of `sin 5theta . cos 3theta = sin 9 theta . cos 7 theta ` in `[0,pi/2]` is

A

4

B

5

C

8

D

9

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The nummber of distinct solutions of sin5 theta*cos3 theta=sin9 theta*cos7 theta in [0,(pi)/(2)] is

Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 theta * cos 7 theta in [0,(pi)/2]

The number of distinct solutions of sin5 theta*cos3 theta*cos7 theta=0 in [0,(pi)/(2)] is :

The number of solutions of tan(5 pi cos theta)=cot(5 pi sin theta) for theta in[0,pi]

Number of solutions of 5cos^(2)theta-3sin^(2)theta+6sin theta cos theta=7 in the interval [0,2 pi) is:

Find the sum of all the solution of the equation cos theta-sin3 theta=cos2 theta in[0,2 pi]

The solution of the equation cos^(2)theta-2cos theta=4sin theta-sin2 theta where theta in[0,pi] is

If 5cos theta+7sin theta=7 then 7cos theta-5sin theta =

The number of values of theta in (0, pi] , such that (cos theta + i sin theta) (cos 3 theta + i sin 3 theta) (cos 5 theta + i sin 5 theta) (cos 7 theta + i sin 7 theta) (cos 9 theta + i sin 9 theta) = -1 is