Home
Class 12
MATHS
If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@...

If `(1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n)`, then 'n' is equal to :

A

16

B

23

C

30

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \ldots (1 + \tan 45^\circ) = 2^n \] ### Step-by-Step Solution: 1. **Understanding the Identity**: We will use the identity: \[ (1 + \tan x)(1 + \tan(45^\circ - x)) = 2 \] This identity holds because: \[ \tan(45^\circ - x) = \frac{1 - \tan x}{1 + \tan x} \] Thus, \[ (1 + \tan x)(1 + \tan(45^\circ - x)) = (1 + \tan x)\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) = 2 \] 2. **Pairing Terms**: We can pair the terms in the product: - \( (1 + \tan 1^\circ)(1 + \tan 44^\circ) \) - \( (1 + \tan 2^\circ)(1 + \tan 43^\circ) \) - \( (1 + \tan 3^\circ)(1 + \tan 42^\circ) \) - ... - \( (1 + \tan 22^\circ)(1 + \tan 23^\circ) \) - The last term is \( (1 + \tan 45^\circ) \) Each of these pairs evaluates to 2, and there are 22 pairs. 3. **Calculating the Product**: Since there are 22 pairs, we have: \[ 2^{22} \text{ from the pairs} \] Additionally, we have the last term: \[ 1 + \tan 45^\circ = 1 + 1 = 2 \] 4. **Combining the Results**: Therefore, the entire product can be expressed as: \[ 2^{22} \times 2^1 = 2^{22 + 1} = 2^{23} \] 5. **Finding 'n'**: From the equation \( 2^{23} = 2^n \), we can conclude that: \[ n = 23 \] ### Final Answer: The value of \( n \) is \( \boxed{23} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+tan1^(0))(1+tan2^(0))(1+tan3^(0)).......(1+tan45^(0)) =?

Let (1+tan1^(ul0))(1+tan2^(ul0))......(1+tan45^(ul0))=2^(k) then k equal to

Prove that (1+tan1^(@))(1+tan2^(@))...(1+tan45^(@))=2^(23)

(1+tan3^(@))(1+tan6^(@))....(1+tan42^(@))(1+tan45^(@)=2^(k) Then find the value of k

Prove that (1+tan1^(@))(1+tan2^(@))...(1+tan45)=2^(23)

If (1+tan5^0)(1+tan10^0)..... (1+tan45^0)=2^(k+1), then k is equal to

Given that (1+tan1^(@))(1+tan2^(@))+.........+(1+tan45^(@))=2^(n) find n.

Prove that (1+tan1^(0))(1+tan2^(0))......(1+tan45^(@))=2^(23)

(1) (1-tan^(2)45^(@))/(1+tan^(2)45^(@)) =