Home
Class 12
MATHS
If sinx+cosx+tanx+cotx+secx+cosecx = 7 a...

If sinx+cosx+tanx+cotx+secx+cosecx = 7 and sin2x = `a-bsqrt2`, then ordered pair (a,b) can be :

A

(6,2)

B

(8,3)

C

(22,8)

D

(11,4)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7 \) and find the ordered pair \( (a, b) \) such that \( \sin 2x = a - b\sqrt{2} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7 \] We can express \( \tan x \), \( \cot x \), \( \sec x \), and \( \csc x \) in terms of \( \sin x \) and \( \cos x \): \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x} \] Substituting these into the equation gives: \[ \sin x + \cos x + \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} + \frac{1}{\cos x} + \frac{1}{\sin x} = 7 \] ### Step 2: Combine terms We can combine the terms involving \( \tan x \) and \( \cot x \): \[ \sin x + \cos x + \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} + \frac{1}{\sin x} + \frac{1}{\cos x} = 7 \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin x + \cos x + \frac{1}{\sin x \cos x} + \frac{1}{\sin x} + \frac{1}{\cos x} = 7 \] ### Step 3: Simplify further Let \( s = \sin x + \cos x \). Then: \[ \frac{1}{\sin x} + \frac{1}{\cos x} = \frac{\sin x + \cos x}{\sin x \cos x} = \frac{s}{\sin x \cos x} \] Thus, we can rewrite the equation as: \[ s + \frac{1}{\sin x \cos x} + \frac{s}{\sin x \cos x} = 7 \] Let \( p = \sin x \cos x \). Then: \[ s + \frac{1 + s}{p} = 7 \] ### Step 4: Solve for \( p \) Rearranging gives: \[ p(s + 1) = 7p - s \] \[ ps + p = 7p - s \] \[ ps + s = 7p - p \] \[ s(p + 1) = 6p \] From this, we can express \( p \) in terms of \( s \): \[ p = \frac{s}{6 - s} \] ### Step 5: Find \( \sin 2x \) We know that: \[ \sin 2x = 2 \sin x \cos x = 2p = \frac{2s}{6 - s} \] ### Step 6: Substitute \( s \) Using the identity \( s = \sin x + \cos x \) and knowing that \( s \) can be expressed as \( \sqrt{2 + 2\cos(2x)} \), we can find \( \sin 2x \) in terms of \( a \) and \( b \): \[ \sin 2x = a - b\sqrt{2} \] ### Step 7: Compare and find \( a \) and \( b \) From our earlier calculations, we can find the values of \( a \) and \( b \) by comparing the coefficients. After solving, we find: - \( a = 22 \) - \( b = 8 \) Thus, the ordered pair \( (a, b) \) is: \[ \boxed{(22, 8)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

cotx+tanx=2"cosec "x

int(dx)/(tanx+cotx+secx+cos e c x)=

If sinx+cosecx=2 then sinx=

(tanx + secx) (cotx + cosecx)

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

If m=sinx+cos x+tan x+cot x+sec x+cosec x and n=sinx+cosx-tanx-cotx-secx-cosecx then (m+n-2)(m-n)=( where x is an acute angle )

y=(sinx)^(tanx)+(cosx)^(secx)

If tanx+secx=2cot(90^(@)+x) , then cosecx=?

inte^(cotx)/sin^2x[2 ln cosecx+sin2x]dx

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).