Home
Class 12
MATHS
1/(cosalpha+cos3alpha)+1/(cosalpha+cos5a...

`1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)alpha`

A

`cosec alpha [tan(n+1)alpha-tan alpha]`

B

`sec alpha [ tan(n+1)alpha - tan alpha]`

C

`1/2 sec alpha[ tan (n+1)alpha - tan alpha]`

D

`1/2 cosec alpha[ tan (n+1) alpha - tan alpha]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(cos alpha+cos3 alpha)+(1)/(cos alpha+cos5 alpha)...(.1)/(cos alpha+cos(2n+1)alpha)

For alpha=pi/7 which of the following hold(s) good? (a) tanalphatan2alphatan3alpha=tan3alpha-tan2alpha-tanalpha (b)cos e calpha=cos e c2alpha+cos e c4alpha (c)cosalpha-cos2alpha+cos3alpha=1/2 (d)8cosalphacos2alphacos4alpha=1

If alpha = (pi)/(13), Prove that cos alpha cos 2alpha cos 3alpha cos 4alpha cos 5alpha cos 6alpha = (1)/(64) .

f_(n)(a)=(sin alpha+sin3 alpha+sin5 alpha+...+sin(2n-1)alpha)/(cos alpha+cos3 alpha+cos5 alpha+...+cos(2n-1)alpha) Then,the value of f_(4)((pi)/(32)) is equal to

If tantheta = (sinalpha-cosalpha)/(sinalpha+cosalpha), then (A) sin alpha-cos alpha=+-sqrt(2) sin theta (B) sinalpha+cosalpha=+-sqrt(2) cos theta (C) cos2theta=sin2alpha (D) sin2theta+cos2alpha=0

A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle alpha(0ltalphaltpi/ 4) with the positive direction of x-axis. equation its diagonal not passing through origin is (a) y(cosalpha+sinalpha)+x(sinalpha-cosalpha)="alpha(b)y(cosalpha+sinalpha)+x(sinalpha+cosalpha)=alpha(c)y(cosalpha+sinalpha)+x(cosalpha-sinalpha)=alpha(d)y(cosalpha-sinalpha)-x(sinalpha-cosalpha)=alpha

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

If alpha = pi/3, prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16.