Home
Class 12
MATHS
Suppose sin^(3)xsin3x= sum(n=0)^(n) c(n)...

Suppose `sin^(3)xsin3x= sum_(n=0)^(n) c_(n)cosnx` is an identify in n, where `C_(0), C_(1) , …..C_(n)` are constants and `C_(n) ne 0, `Then , the value of n is ___________.

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose sin^(3)x sin3x=sum_(m=0)^(n)C_(m)cos mx is an identity in x, where C_(0),C_(1)...,C_(n) are constants and C_(n)!=0, the the value of n is

Let sin^(3)x* sin 3x = sum_(m=0)^(n) c_m cos mx be an identity in x where c_1, c_2 , etc., are constants, c_n ne 0 . Then n=______, c_5 =_____.

if sin^(3)x-sin3x=sum_(m=0rarr n)c_(m)*cos mx is an identity in x, where c_(m)^(=0rarr n) are constant then the value of n is

If sin^(3)x sin3x=sum_(n=0)^(6)c_(n)cos^(n)x where c_(0),c_(1),c_(2),...c_(6) are constants.then find the value of c_(4)

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(n) and sum_(r=0)^(n)(C_(r))/(r+1)=k then the value of k is

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+(C_(1))/(2)+......+(C_(n))/(n+1)=2

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to