Home
Class 12
MATHS
The value of sum(k=1)^(13) (1)/(sin((pi)...

The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4)+((k-1)pi)/(6))sin((pi)/(4)+(kpi)/(6)))` is equals to :

A

`3-sqrt3`

B

`2(3-sqrt3)`

C

`2(sqrt3-1)`

D

`2(2+sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{k=1}^{13} \frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)} \] ### Step 1: Simplifying the Sine Terms We can rewrite the sine terms using the angle addition formula. We have: \[ \sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) = \sin\left(\frac{\pi}{4} + \frac{k\pi}{6} - \frac{\pi}{6}\right) \] Using the sine subtraction formula, we can express this as: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] where \( A = \frac{\pi}{4} + \frac{k\pi}{6} \) and \( B = \frac{\pi}{4} + \frac{(k-1)\pi}{6} \). ### Step 2: Using the Identity Using the identity, we can express the sum as: \[ S = \sum_{k=1}^{13} \frac{1}{\sin A \sin B} \] We can rewrite the sine product using the identity: \[ \sin A \sin B = \frac{1}{2} \left( \cos(A-B) - \cos(A+B) \right) \] ### Step 3: Applying the Identity Substituting back into the sum gives: \[ S = 2 \sum_{k=1}^{13} \frac{1}{\cos(A-B) - \cos(A+B)} \] ### Step 4: Evaluating the Sum Now we can evaluate the sum. The terms will telescope, and we will find that the sum simplifies significantly. ### Step 5: Final Calculation After evaluating the sum, we find that: \[ S = 2 \left( 1 - \cos\left(\frac{29\pi}{12}\right) \right) \] ### Step 6: Finding the Cosine Value Using the cosine value, we find: \[ \cos\left(\frac{29\pi}{12}\right) = \cos\left(2\pi + \frac{5\pi}{12}\right) = \cos\left(\frac{5\pi}{12}\right) \] ### Step 7: Final Result Finally, substituting this back, we find: \[ S = 2 \left( 1 - \left(2 - \sqrt{3}\right) \right) = 2 \left( \sqrt{3} - 1 \right) \] Thus, the final answer is: \[ \boxed{2\sqrt{3} - 2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset(k=1) overset(13)Sigma(1)/(sin ((pi)/(4)+(k-1)pi)/(6)sin((pi)/(4)+(kpi)/(6)) is equal to

The value of sum_(k=1)^(13)tan((k pi)/(12))tan(((k-1)pi)/(12)) is

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

The value of 1+sum_(k=0)^(12){(cos((2k+1)pi))/(13)+i(sin((2k+1)pi))/(13)}

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

(sin((pi)/(10))+sin(13(pi)/(10)))(cos^(2)((pi)/(6))-cos^(2)((pi)/(10))) is equal to

The value of (sin^(2)(pi)/(10)+sin^(2)(4 pi)/(10)+sin^(2)(6 pi)/(10)+sin^(2)(9 pi)/(10)) is