Home
Class 12
MATHS
The number of ordered pairs (alpha, beta...

The number of ordered pairs (`alpha, beta`) ,where `alpha, beta in (-pi, pi)` satisfying `cos(alpha-beta) =1 "and" cos(alpha+beta) = (1)/(sqrt2)` is :

A

0

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered pairs (alpha,beta) , where alpha,beta in(-pi,pi) satisfying cos(alpha-beta)=1 and cos(alpha+beta)=(1)/(e) is

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

The value of 2alpha+beta(0ltalpha, beta lt (pi)/(2)) , satisfying the equation cos alpha cos beta cos (alpha+beta)=-(1)/(8) is equal to

Number of ordered pair (alpha,beta), satisfying the condition alpha^(8)+beta^(8)=8 alpha beta-6 is

Find the value of alpha and beta,0

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

If cos(alpha-beta)+1=0, show that cos alpha+cos beta=0 and sin alpha+sin beta=0

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :