Home
Class 12
MATHS
5(tan^(2)x-cos^(2)x) = 2cos2x +9 , then ...

`5(tan^(2)x-cos^(2)x) = 2cos2x +9` , then the value of cos4x is:

A

`-3//5`

B

`1//3`

C

`2//9`

D

`-7//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5(\tan^2 x - \cos^2 x) = 2 \cos 2x + 9 \) and find the value of \( \cos 4x \), we can follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \tan^2 x = \sec^2 x - 1 \] Substituting this into the equation gives: \[ 5((\sec^2 x - 1) - \cos^2 x) = 2 \cos 2x + 9 \] ### Step 2: Substitute \( \sec^2 x \) Since \( \sec^2 x = \frac{1}{\cos^2 x} \), we can rewrite the equation as: \[ 5\left(\frac{1}{\cos^2 x} - 1 - \cos^2 x\right) = 2 \cos 2x + 9 \] ### Step 3: Use the identity for \( \cos 2x \) The identity for \( \cos 2x \) is: \[ \cos 2x = 2 \cos^2 x - 1 \] Substituting this into the equation gives: \[ 5\left(\frac{1}{\cos^2 x} - 1 - \cos^2 x\right) = 2(2 \cos^2 x - 1) + 9 \] ### Step 4: Simplify the right-hand side The right-hand side simplifies to: \[ 4 \cos^2 x - 2 + 9 = 4 \cos^2 x + 7 \] ### Step 5: Set the equation Now we have: \[ 5\left(\frac{1}{\cos^2 x} - 1 - \cos^2 x\right) = 4 \cos^2 x + 7 \] ### Step 6: Multiply through by \( \cos^2 x \) to eliminate the fraction \[ 5(1 - \cos^2 x - \cos^4 x) = (4 \cos^2 x + 7) \cos^2 x \] Expanding both sides gives: \[ 5 - 5 \cos^2 x - 5 \cos^4 x = 4 \cos^4 x + 7 \cos^2 x \] ### Step 7: Rearrange the equation Rearranging terms results in: \[ -5 \cos^4 x - 4 \cos^4 x - 5 \cos^2 x - 7 \cos^2 x + 5 = 0 \] Combining like terms: \[ -9 \cos^4 x - 12 \cos^2 x + 5 = 0 \] ### Step 8: Substitute \( t = \cos^2 x \) Let \( t = \cos^2 x \): \[ -9t^2 - 12t + 5 = 0 \] Multiplying through by -1 gives: \[ 9t^2 + 12t - 5 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 9 \cdot (-5)}}{2 \cdot 9} \] Calculating the discriminant: \[ t = \frac{-12 \pm \sqrt{144 + 180}}{18} = \frac{-12 \pm \sqrt{324}}{18} = \frac{-12 \pm 18}{18} \] ### Step 10: Solve for \( t \) Calculating the two possible values for \( t \): 1. \( t = \frac{6}{18} = \frac{1}{3} \) 2. \( t = \frac{-30}{18} \) (not valid since \( t \) must be non-negative) Thus, \( \cos^2 x = \frac{1}{3} \). ### Step 11: Find \( \cos 2x \) Using the identity \( \cos 2x = 2 \cos^2 x - 1 \): \[ \cos 2x = 2 \cdot \frac{1}{3} - 1 = \frac{2}{3} - 1 = -\frac{1}{3} \] ### Step 12: Find \( \cos 4x \) Using the identity \( \cos 4x = 2 \cos^2 2x - 1 \): First, calculate \( \cos^2 2x \): \[ \cos^2 2x = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \] Now substitute into the identity: \[ \cos 4x = 2 \cdot \frac{1}{9} - 1 = \frac{2}{9} - 1 = -\frac{7}{9} \] Thus, the value of \( \cos 4x \) is: \[ \boxed{-\frac{7}{9}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

6tan^(2)x-2cos^(2)x=cos2x if cos2x=

If cot^(4)x-cot^(2)x=1 , then the value of cos^(4)x+cos^(2)x is ________

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If tan x+tan^(2)x+tan^(8)x=1, then the value of 2cos^(6)x-2cos^(4)+cos^(2)x equals to

If cos^(2)x+cos^(4)x=1 , then find the value of tan^(2)x+tan^(4)x .

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

" If "sin^(2)x+sin x cos x-6cos^(2)x=0" and "-(pi)/(2)ltxlt0," then value of "cos2x" is " -3/5 3/5 -4/5 4/5