Home
Class 12
MATHS
If |(z-2)/(z+2)|=pi/6, then the locus o...

If `|(z-2)/(z+2)|=pi/6`, then the locus of `z` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If |z+2+3i|=5 then the locus of z is

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If z=x+iy and arg((z-2)/(z+2))=(pi)/(6), then find the locus of z.

If |z^(2)|=2Re(z) then the locus of z is

if Amp((z+2)/(z-4i))=(pi)/(2), then the locus of z=x+iy is

if |z+1|^(2)+|z|^(2)=4, then the locus of z is