Home
Class 12
MATHS
A real value of x satisfies the equation...

A real value of x satisfies the equation `(3-4ix)/(3+4ix)=alpha-ibeta(alpha,beta in R)`, if `alpha^2+beta^2=`

A

1

B

-1

C

2

D

-2

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

A real value of x satisfies the equation (3-4ix)/(3+4ix)=alpha-i beta(alpha,beta in R), if alpha^(2)+beta^(2)=

Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisfy the equatin x ^(3) -3x ^(2)+4x-5=0,alpha, beta in R, then alpha + beta =

Given alpha and beta are the roots of the quadratic equation x^(2)-4x+k=0(k!=0)* If alpha beta,alpha beta^(2)+alpha^(2)beta,alpha^(3)+beta^(3) are in geometric progression,then the value of 7k/2 equals

Given alpha and beta are the roots of the quadratic equation x^(2)-4x+k=0(kne0). If alpha beta, alpha beta^(2)+alpha^(2)beta and alpha^(3)+beta^(3) are in geometric progression, then the value of k is equal to

If alpha and beta are are the real roots of the equation x^(3)-px-4=0,p in R such that 2alpha+beta=0 then the value of (2alpha^(3)+beta^(3)) equals

If alpha,beta, are roots of the equation x^(2)+sqrt(x)alpha+beta=0,beta beta then values of alpha and beta are 1. alpha=1 and beta=12 .alpha=1 and beta=-2 3.alpha=2 and beta=1alpha=2 and beta=-2

If alpha and beta are the real roots of the equation x^(3)-px-4=0, p in R such that 2 alpha+beta=0 then the value of (2 alpha^(3)+beta^(3)) equals

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha>beta) then find the value of f(alpha,beta)=(beta^(3))/(2)csc^(2)((1)/(2)tan^(-1)((beta)/(alpha))+(alpha^(3))/(2)sec^(2)((1)/(2)tan^(-1)((alpha)/(beta)))

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha