Home
Class 12
MATHS
((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is...

`((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2)` is equal to :

A

`2i`

B

`-2i`

C

`-2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1+i}{1-i}\right)^{2} + \left(\frac{1-i}{1+i}\right)^{2}\), we will follow these steps: ### Step 1: Simplify the first term We start with the first term \(\frac{1+i}{1-i}\). To simplify this, we can multiply the numerator and the denominator by the conjugate of the denominator, which is \(1+i\): \[ \frac{1+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} \] Calculating the numerator: \[ (1+i)(1+i) = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] Calculating the denominator: \[ (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 \] Thus, we have: \[ \frac{1+i}{1-i} = \frac{2i}{2} = i \] ### Step 2: Square the first term Now we square the result from Step 1: \[ \left(\frac{1+i}{1-i}\right)^{2} = i^{2} = -1 \] ### Step 3: Simplify the second term Next, we simplify the second term \(\frac{1-i}{1+i}\) in a similar way. We multiply the numerator and the denominator by the conjugate of the denominator, which is \(1-i\): \[ \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} \] Calculating the numerator: \[ (1-i)(1-i) = 1 - 2i + i^2 = 1 - 2i - 1 = -2i \] Calculating the denominator: \[ (1+i)(1-i) = 1^2 - i^2 = 1 - (-1) = 2 \] Thus, we have: \[ \frac{1-i}{1+i} = \frac{-2i}{2} = -i \] ### Step 4: Square the second term Now we square the result from Step 3: \[ \left(\frac{1-i}{1+i}\right)^{2} = (-i)^{2} = -1 \] ### Step 5: Combine the results Now we combine the results from Step 2 and Step 4: \[ \left(\frac{1+i}{1-i}\right)^{2} + \left(\frac{1-i}{1+i}\right)^{2} = -1 + (-1) = -2 \] ### Final Answer Thus, the final answer is: \[ \boxed{-2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

((1+i)^(3))/(2+i) is equal to

(1+2i)/(1+3i) is equal to

(1+2i)/(1-(1-i)^2)

If ((1+i)/(1-i))^(2) - ((1-i)/(1+i))^(2) = x + iy then find (x,y).

(1+i)^(4)+(1-i)^( 4) is equal to

1+i+i^(2)+i^(3) is equal to

1+i+i^(2)+i^(3) is equal to

if z = ((1+i)/(1-i)) then z^(2) equals

(2/(1-i) + 3/(1+i))((2+3i)/(4+5i)) is equal to