Home
Class 12
MATHS
If (a + i b) (c + i d) (e + if) (g + i h...

If `(a + i b) (c + i d) (e + if) (g + i h) = A + i B`, then show that `(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)=A^2+B^2`

A

`A^(2) - B^(2)`

B

`A^(2) + B^(2)`

C

`A^(4) + B^(4)`

D

`A^(4) - B^(4)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

(a+ib)(c+id)(e+if)(g+ih)=A+iB, then show that (a^(2)+b^(2))(c^(2)+d^(2))(e^(2)+f^(2))(g^(2)+h^(2))=A^(2)+B^(2)

If (a+ib)(c+id)(e+ if )(g+ih)=A+iB prove that (a^(2)+b^(2))(c^(2)+d^(2))(e^(2)+f^(2))(g^(2)+h^(2))=A^(2)+B^(2)

If a,b,c are in HP,b,c,d are in GP and c,d,e are in AP, than show that e=(ab^(2))/(2a-b)^(2) .

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + a^(2)) are in G.P.

If a,b,c,d be in G.P. show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2.

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)