Home
Class 12
MATHS
If z=r e^(itheta) , then prove that |e^(...

If `z=r e^(itheta)` , then prove that `|e^(i z)|=e^(-r s inthetadot)`

A

`e^(-rsin theta)`

B

`re^(-rsin theta)`

C

`e^(-rcos theta)`

D

`re^(-rcos theta)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

If z= 5e^(itheta), then |e^(iz)| is equal to

If z=re^(i)theta then |e^(iz)| is equal to:

The value of |e^(z)|=

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

Read the following writeup carefully: In argand plane |z| represent the distance of a point z from the origin. In general |z_1-z_2| represent the distance between two points z_1 and z_2 . Also for a general moving point z in argand plane, if arg(z) =theta , then z=|z|e^(itheta) , where e^(itheta) = cos theta + i sintheta . Now answer the following question If |z-(3+2i)|=|z cos ((pi)/(4) - "arg" z)|, then locus of z is