Home
Class 12
MATHS
The value of (sin frac(pi)(8) + i cos fr...

The value of `(sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8))` is :

A

`-1`

B

0

C

1

D

`2i`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((sin((pi)/(8))-i cos((pi)/(8)))^(8)) =

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)

Knowledge Check

  • [(1 + sin "" (pi)/( 8) + i cos "" (pi)/( 8))/( 1 + sin "" (pi)/( 8) - i cos "" (pi)/( 8))]^(8) =

    A
    `-1`
    B
    `1`
    C
    `i`
    D
    `-i`
  • The smallest positive integral value of n such that [(1 + sin ""(pi)/(8) + i cos"" (pi)/(8))/(1 + sin "" (pi)/(8) - i cos "" (pi)/(8))] is purely imaginary is

    A
    2
    B
    3
    C
    4
    D
    1
  • (frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

    A
    (a) `(-frac(1)(5))^(5)`
    B
    (b) `(frac(-1)(5))^(11)`
    C
    (c) `(-5)^(5)`
    D
    (d) `(frac(1)(5))^(5)`
  • Similar Questions

    Explore conceptually related problems

    " **4.Show that one value of "((1+sin(pi)/(8)+i cos(pi)/(8))/(1+sin(pi)/(8)-i cos(pi)/(8)))^((8)/(3))=-1

    Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

    Simplify: [(1+ (sin pi) / (8) + i (cos pi) / (8)) / (1+ (sin pi) / (8) -i (cos pi) / (8))] ^ ((1) / (2))

    The value of cos(pi)/(8)cos(3 pi)/(8)cos(5 pi)/(8)cos(7 pi)/(8) is equal to

    The value of cos^(4) ""(pi)/(8) + cos^(4) ""(3pi)/(8)+cos^(4) ""(5 pi)/(8) + cos^(4) ""(7 pi)/(8) is