Home
Class 12
MATHS
The value of (sin frac(pi)(8) + i cos fr...

The value of `(sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8))` is :

A

`-1`

B

0

C

1

D

`2i`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

((sin((pi)/(8))+i cos((pi)/(8)))^(8))/((sin((pi)/(8))-i cos((pi)/(8)))^(8)) =

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)

" **4.Show that one value of "((1+sin(pi)/(8)+i cos(pi)/(8))/(1+sin(pi)/(8)-i cos(pi)/(8)))^((8)/(3))=-1

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

Simplify: [(1+ (sin pi) / (8) + i (cos pi) / (8)) / (1+ (sin pi) / (8) -i (cos pi) / (8))] ^ ((1) / (2))

(frac(-1)(5))^(3) div (frac(-1)(5))^(8)= ?

The value of cos(pi)/(8)cos(3 pi)/(8)cos(5 pi)/(8)cos(7 pi)/(8) is equal to