Home
Class 12
MATHS
If =a+b,y=aomega+bomega^2 and z=aomega^2...

If `=a+b,y=aomega+bomega^2 and z=aomega^2+bomega`, prove tht `xyz=a^3+b^3

A

`(a + b)^(3)`

B

`a^(3) + b^(3) `

C

`a^(3) - b^(3)`

D

`(a+b)^(3) + 3 ab (a + b)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a+b,y=a omega+b omega^(2),z=a omega^(2)+b omega prove that x^(3)+y^(3)+z^(3)=3(a^(3)+b^(3))

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega) , where omega is an imaginary cube root of unity.

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If a^(x)=b,b^(y)=c and c^(z)=a, prove that xyz=1

Let omega =e^(ipi/3) and a,b,c,x,y,z be nonzero complex number such that a+b+c=x, a+bomega+comega^2=y, a+bomega^2+comega=z . Then the value of (|x|^2+|y|^2+|z|^2)/(|a|^2+|b|^2+|c|^2) is