Home
Class 12
MATHS
The value of (4(cos75^(@) + isin 75^(@)...

The value of `(4(cos75^(@) + isin 75^(@)))/(0.4(cos30^(@) + i sin 30^(@)))` is :

A

`10/sqrt(20 ( 1 + i)`

B

`10/sqrt(2) ( 1- i)`

C

`5/sqrt(2) ( 1 _ i)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression: \[ \frac{4(\cos 75^\circ + i \sin 75^\circ)}{0.4(\cos 30^\circ + i \sin 30^\circ)} \] ### Step 1: Convert to exponential form Using Euler's formula, we can express the trigonometric functions in terms of exponentials: \[ \cos \theta + i \sin \theta = e^{i\theta} \] Thus, we can rewrite the expression as: \[ \frac{4 e^{i 75^\circ}}{0.4 e^{i 30^\circ}} \] ### Step 2: Simplify the coefficients We can simplify the coefficients in the expression: \[ \frac{4}{0.4} = \frac{4 \times 10}{4} = 10 \] So the expression becomes: \[ 10 \cdot \frac{e^{i 75^\circ}}{e^{i 30^\circ}} \] ### Step 3: Use properties of exponents Using the property of exponents \(\frac{e^a}{e^b} = e^{a-b}\): \[ \frac{e^{i 75^\circ}}{e^{i 30^\circ}} = e^{i(75^\circ - 30^\circ)} = e^{i 45^\circ} \] ### Step 4: Combine the results Now we can combine the results: \[ 10 \cdot e^{i 45^\circ} \] ### Step 5: Convert back to trigonometric form Using Euler's formula again: \[ e^{i 45^\circ} = \cos 45^\circ + i \sin 45^\circ \] We know that \(\cos 45^\circ = \sin 45^\circ = \frac{1}{\sqrt{2}}\), so: \[ e^{i 45^\circ} = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \] ### Step 6: Multiply by 10 Now we multiply by 10: \[ 10 \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \frac{10}{\sqrt{2}} + i \frac{10}{\sqrt{2}} \] ### Final Result Thus, the final answer is: \[ \frac{10}{\sqrt{2}} (1 + i) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos 75^(@)

Find the value of cos 75^@

The value of (cos 0^(@) + sin 45^(@) + sin 30^(@)) (sin 90^(@) - cos 45^(@) + cos 60^(@)) is

Find the value of (sin75^(@)+sin15^(@))/(cos75^(@)+cos15^(@)) :

The value of (sin 30^@ sin 60^@)/(cos 60^@ cos 30^@)-tan45^@ is : (sin 30^@ sin 60^@)/(cos 60^@ cos 30^@)-tan45^@ का मान है?

(sin 30^@)/(1+cos30^@)+ (1+cos30^@)/(sin 30^@) = ?

What is the value of (sin30^(@)+cos30^(@))/(cos30^(@)-sin30^(@)) ?