Home
Class 12
MATHS
If x^2-x+1=0 then the value of sum[n=1]^...

If `x^2-x+1=0` then the value of `sum_[n=1]^[5][x^n+1/x^n]^2` is:

A

8

B

10

C

12

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(n)=[(1)/(2)+(n)/(100)] where [x] denote the integral part of x. Then the value of sum_(n=1)^(100)f(n) is

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

For x in Rwith|x|<1, the value of sum_(n=0)^(oo)(1+n)x^(n) is

The value of sum_(n=1)^100 int_(n-1)^n e^(x-[x])dx =

The average of n numbers x_(1), x_(2), ……. X_(n) is bar(x) . Then the value of sum_(i=1)^(n) (x_(1) - bar(x)) is equal to

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If x^(2) - x+ 1 =0, sum_(n=1)^(5) (x^(n) +(1)/(x^(n))) equals -