Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then `((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4))` is equal to

A

0 if n is even

B

0 for all ` n in Z`

C

`2^(n-1) cdot I ` for all `n in N`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(2)) is equal to

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If omega is complex cube root of unity (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

If i=sqrt(-1),w is non real cube root of unity then ((1+i)^(2n)-(1-i)^(2n))/((1+w^(4)-w^(2))(1-w^(4)+w^(2)))

If 1,omega,omega^(2) are cube roots of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) is equal to

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)