Home
Class 12
MATHS
If ((1 + cos theta + i sin theta ) /(i+ ...

If `((1 + cos theta + i sin theta ) /(i+ sin theta + i cos theta ))= cos ntheta + i sin n theta ` then n is equal to :

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to simplify the expression and find the value of \( n \) such that: \[ \frac{1 + \cos \theta + i \sin \theta}{i + \sin \theta + i \cos \theta} = \cos n\theta + i \sin n\theta \] ### Step-by-Step Solution: 1. **Simplify the Numerator:** The numerator is \( 1 + \cos \theta + i \sin \theta \). We can rewrite this as: \[ 1 + \cos \theta + i \sin \theta = 1 + \cos \theta + i \sin \theta \] 2. **Simplify the Denominator:** The denominator is \( i + \sin \theta + i \cos \theta \). We can factor out \( i \): \[ i(1 + \cos \theta) + \sin \theta \] 3. **Combine the Expression:** Now, we can rewrite the entire expression: \[ \frac{1 + \cos \theta + i \sin \theta}{i(1 + \cos \theta) + \sin \theta} \] 4. **Multiply by the Conjugate:** To simplify further, we multiply the numerator and denominator by the conjugate of the denominator: \[ \text{Conjugate of } (i + \sin \theta + i \cos \theta) = -i + \sin \theta - i \cos \theta \] 5. **Calculate the Denominator:** The denominator becomes: \[ (i + \sin \theta + i \cos \theta)(-i + \sin \theta - i \cos \theta) \] This simplifies to: \[ \sin^2 \theta + 1 + \cos^2 \theta = 2 \] 6. **Calculate the Numerator:** The numerator becomes: \[ (1 + \cos \theta + i \sin \theta)(-i + \sin \theta - i \cos \theta) \] Expanding this gives: \[ (1 + \cos \theta)(-i) + (1 + \cos \theta)(\sin \theta) + i \sin \theta(-i) + i \sin \theta(-i \cos \theta) \] 7. **Combine Terms:** After simplification, we will have: \[ \text{Numerator} = \sin \theta + \cos \theta + i(1 + \cos \theta) \] 8. **Final Expression:** Now we can write: \[ \frac{\sin \theta + \cos \theta + i(1 + \cos \theta)}{2} \] 9. **Set Equal to Right Side:** Now we equate this to \( \cos n\theta + i \sin n\theta \): \[ \frac{\sin \theta + \cos \theta + i(1 + \cos \theta)}{2} = \cos n\theta + i \sin n\theta \] 10. **Extract Real and Imaginary Parts:** From the above equation, we can equate the real and imaginary parts: - Real part: \( \frac{\sin \theta + \cos \theta}{2} = \cos n\theta \) - Imaginary part: \( \frac{1 + \cos \theta}{2} = \sin n\theta \) 11. **Use Trigonometric Identities:** We can use the half-angle formulas and properties of sine and cosine to find \( n \). 12. **Final Calculation:** We find that: \[ n\theta = \theta - \frac{\pi}{2} \] Solving for \( n \): \[ n = 1 - \frac{\pi}{2\theta} \] ### Conclusion: Thus, the value of \( n \) is: \[ n = 1 - \frac{\pi}{2\theta} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1 + cos theta + i sin theta | =?

((cos theta + i sin theta) / (sin theta + i cos theta)) ^ (4) = cos8 theta + i sin8 theta

[(1 + cos theta + i sin theta) / (sin theta + i (1 + cos theta))] ^ (4) = cos n theta + i sin n theta

(cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

(cos theta + i sin theta)^3 xx (cos theta-i sin theta)^4=

Prove that ((1+cos theta+i sin theta)/(1+cos theta-i sin theta))^(n)=cos n theta+i sin n theta

If sin theta+cos theta=1, then sin theta cos theta is equal to :

((cos theta-i sin theta)^(4))/((sin theta+i cos theta)^(5)) is equal to