Home
Class 12
MATHS
If omega is a complex cube root of unit...

If `omega` is a complex cube root of unity, then `(1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=`

A

0

B

32

C

64

D

128

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))

If omega is a complex cube root of unity,then (x-y)(x omega-y)(x omega^(2)-y)=

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a complex cube root of unity,show that ([1 omega omega^(2)omega omega^(2)1 omega^(2)1 omega]+[omega omega^(2)1 omega^(2)1 omega omega omega^(2)1])[1 omega omega^(2)]=[000]

If omega is complex cube root of unity then (3+5 omega+3 omega^(2))^(2)+(3+3 omega+5 omega^(2))^(2) is equal to

If omega is complex cube root of unity then (3+5 omega+3 omega^(2))^(2)+(3+3 omega+5 omega^(2))^(2) is equal to

If omega is complex cube root of unity (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))