Home
Class 12
MATHS
For x(1), x(2), y(1), y(2) in R if 0 l...

For `x_(1), x_(2), y_(1), y_(2) in R ` if `0 lt x_(1)lt x_(2)lt y_(1) = y_(2)` and `z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2)` and `z_(3) = (z_(1) + z_(2))//2,`then ` z_(1) , z_(2) , z_(3)` satisfy :

A

`abs(z_(1)) = abs( z_(2) ) = abs(z_(3))`

B

`abs(z_(1)) lt abs( z_(2) ) lt abs(z_(3))`

C

`abs(z_(1)) gt abs( z_(2) ) gt abs(z_(3))`

D

`abs(z_(1)) lt abs( z_(3) ) lt abs(z_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the given complex numbers \( z_1, z_2, z_3 \) and their moduli step by step. ### Step 1: Define the Complex Numbers We have: - \( z_1 = x_1 + i y_1 \) - \( z_2 = x_2 + i y_2 \) - \( z_3 = \frac{z_1 + z_2}{2} = \frac{x_1 + x_2}{2} + i \frac{y_1 + y_2}{2} \) ### Step 2: Calculate the Moduli The modulus of a complex number \( z = a + ib \) is given by \( |z| = \sqrt{a^2 + b^2} \). 1. **For \( z_1 \)**: \[ |z_1| = \sqrt{x_1^2 + y_1^2} \] 2. **For \( z_2 \)**: \[ |z_2| = \sqrt{x_2^2 + y_2^2} \] 3. **For \( z_3 \)**: Since \( y_1 = y_2 \), we have: \[ |z_3| = \sqrt{\left(\frac{x_1 + x_2}{2}\right)^2 + \left(\frac{y_1 + y_2}{2}\right)^2} = \sqrt{\left(\frac{x_1 + x_2}{2}\right)^2 + \left(\frac{y_1 + y_1}{2}\right)^2} \] Simplifying this gives: \[ |z_3| = \sqrt{\frac{(x_1 + x_2)^2}{4} + \frac{(2y_1)^2}{4}} = \frac{1}{2} \sqrt{(x_1 + x_2)^2 + 4y_1^2} \] ### Step 3: Compare the Moduli Given that \( 0 < x_1 < x_2 < y_1 = y_2 \), we can analyze the inequalities: 1. **Compare \( |z_1| \) and \( |z_2| \)**: Since \( x_1 < x_2 \) and \( y_1 = y_2 \): \[ |z_1|^2 = x_1^2 + y_1^2 < x_2^2 + y_1^2 = |z_2|^2 \] Thus, \( |z_1| < |z_2| \). 2. **Compare \( |z_3| \) with \( |z_1| \) and \( |z_2| \)**: We need to show that \( |z_1| < |z_3| < |z_2| \). - To show \( |z_3| > |z_1| \): \[ |z_3| = \frac{1}{2} \sqrt{(x_1 + x_2)^2 + 4y_1^2} \] Since \( x_1 + x_2 > 2x_1 \) (because \( x_2 > x_1 \)), we have: \[ |z_3|^2 = \frac{(x_1 + x_2)^2 + 4y_1^2}{4} > |z_1|^2 \] - To show \( |z_3| < |z_2| \): \[ |z_3|^2 = \frac{(x_1 + x_2)^2 + 4y_1^2}{4} < |z_2|^2 \] Since \( x_1 + x_2 < 2x_2 \) (because \( x_1 < x_2 \)), we can conclude that: \[ |z_3|^2 < |z_2|^2 \] ### Conclusion From the inequalities derived, we conclude that: \[ |z_1| < |z_3| < |z_2| \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For x_1,x_2, y_1, y_2 in R , if 0

The value of |(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))| , is

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

Let x_(1) and y_(1) be real number. If z_(1) and z_(2) are complex numbers such that |z_(1)|=|z_(2)|=4 , then |x_(1)z_(1)-y_(1)z_(2)|^(2)+|y_(1)z_(1)+x_(1)z_(2)|^(2)=

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

If |z_(1)-1|lt 1,|z_(2)-2|lt 2,|z_(3)-3|lt 3 , then |z_(1)+z_(2)+z_(3)|

XY - plane divides the line joining A(x_(1),y_(1),z_(1)) and B(x_(2),y_(2),z_(2)) in the ratio

The distance between the points A(x_(1),y_(1),z_(1)) and B(x_(2),y_(2),z_(2)) is AB=