Home
Class 12
MATHS
If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z...

If `z=-2+2sqrt(3)i,` then `z^(2n)+2^(2n)*z^n+2^(4n)` is equal to

A

0

B

`-1`

C

1

D

`3xx 2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n theta) is equal to

|z|=1&z^(2n)+1!=0 then (z^(n))/(z^(2n)+1)-(z^(n))/(z^(2n)+1) is equal to

Let n be an integer and x,y,z lt1 . Suppose Delta=|(x^(n+1),x^(n+2),x^(n+3)),(y^(n+1),y^(n+2),y^(n+3)),(z^(n+1),z^(n+2),z^(n+3))| If Delta=(x-y)(y-z)(z-x)x^(2)y^(2)z^(2) then n is equal to

{n(n+1)(2n+1):n in Z} is a subset of