Home
Class 12
MATHS
tan(ilog((a+ib)/(a-ib)))=...

`tan(ilog((a+ib)/(a-ib)))=`

A

`(ab)/(a^(2)+b^(2))`

B

`(2ab)/(a^(2)-b^(2))`

C

`(ab)/(a^(2)-b^(2))`

D

`(2ab)/(a^(2)+b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (tan(i*log((a-ib)/(a+ib)))) is

tan (i log ((a-ib)/(a+ib))) = (i) ab (ii) (2ab)/(a^(2) -b^(2)) (iii) (a^( 2) -b^(2))/(ab) (iv) (2ab)/(a^(2)+b^(2))

Prove that tan(i log_(e)((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a,b in R^(+))

tan (i log ((a + ib) / / a-ib))) =

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to

If theta is the amplitude of (a+ib)/(a-ib) , then tantheta equals:

Given that (a_(1)+ib_(1))(a_(2)+ib_(2)) . . . .(a_(n)+ib_(n))=c+id , show that: tan^(-1)((b_(1))/(a_(1)))+tan^(-1)((b_(2))/(a_(2)))+ . . .+tan^(-1)((b_(n))/(a_(n)))=mpi+tan^(-1)((d)/(c)) .

The value of Arg [i ln ((a-ib)/(a+ib))] , where a and b are real numbers, is

Given that: (a_(1)+ib_(1))(a_(2)+ib_(2)) . . . (a_(n)+ib_(n))=c+id , show that: tan^(-1)((b_(1))/(a_(1)))+tan^(-1)((b_(2))/(a_(2)))+ . . .+tan^(-1)((b_(n))/(a_(n))) =mpi+tan^(-1)((d)/(c)) .

x + iy = (a + ib) / (a-ib), provethat x ^ (2) + y ^ (2) = 1